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ABSTRACT
Non-intrusive load monitoring (NILM) involves separating the
household aggregate energy consumption into constituent appli-
ances. In 2014, a toolkit called NILMTK was released towards mak-
ing NILM reproducible. Subsequently, in 2019, an improved version
called NILMTK-contrib, focused on experiments and ease of adding
new algorithms was released. Since then, there have been signifi-
cant advances in neural networks for various applications, and in
the NILM domain. In this paper, we implement five recent neural
network architectures for NILM in NILMTK-contrib and bench-
mark against existing algorithms. Further, in this paper, we also
implement a dataset parser for a publicly available dataset called
IDEAL containing 255 homes with 39 homes having appliance data.
We find that the new algorithms are comparable or better than the
state-of-the-art over a subset of the appliances.
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1 INTRODUCTION
Non-intrusive load monitoring (NILM) is the task of estimating
power consumption of appliances from aggregate mains level read-
ing [7]. The problem was initially presented in the 1980s. The field
of NILM has seen a recent renewed interest due to the availability of
smart meter data, improved compute and algorithmic capabilities.

Due to different sampling periods of datasets, different metrics
used for different algorithms, and the non-availability of public
benchmarks, there was a problem in comparing various algorithms
and datasets. In 2014, NILMTK [2], an open-source toolkit, helped
the community to make comparative analyses among various algo-
rithms and datasets. In 2019, an improvement for NILMTK called
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NILMTK-contrib [5] proposed a new easier experiment API and
state-of-the-art neural network baselines.

Since 2019, a number of neural networks based NILM approaches
have been proposed. Our first contribution in this paper is an im-
plementation of five such methods. These algorithms leverage the
recent advances in attention [1, 15], residual networks [8, 9], and
multi-task learning [6, 15]. The intuition behind attentionweights is
to focus on relevant input information. The addition of residual net-
work proposed that the presence of the skip connection as shown
in Figure 1 allows “deeper” learning. The model with regression
and classification subnetwork as shown in Figure 2 is simultane-
ously trained on both the subnetworks is inspired by advances
in multi-task learning. The classification sub-network provided a
sub-path for detecting the on-off state of an appliance accurately.
Our second contribution in this paper consists of a parser for the
publicly available dataset from the UK called IDEAL [16].

Our third contribution in this paper is the empirical comparison
of five proposed neural network approaches against the existing
state-of-the-art implementations on two publicly available datasets:
REDD [13] and IDEAL [16]. Our main findings are: i) For a subset
of appliances, the newly implemented algorithms performed bet-
ter than the existing ones; ii) Existing algorithms mostly always
predicted the sparse appliances as off, while newly implemented
algorithms performed better capturing the on-off state.

2 IMPLEMENTATION OF NEURAL NETWORK
METHODS FOR NILM

We have implemented five different types of neural networks and
contributed them to the NILMTK-contrib repository. This section
contains model overview for various algorithms and explains the
importance of different layers in corresponding networks. These
algorithms are inspired broadly by the Seq2Seq and Seq2Point [18]
architectures which accept a sequence of mains reading as input
and predict a sequence or point for the appliance reading.

2.1 Bidirectional Long short term memory
(BiLSTM)

Recurrent neural networks can learn patterns from sequential data.
However, they are limited to relatively short-term context. Long
short term memory model (LSTM) and Bidirectional LSTM (BiL-
STM) are used for learning relatively longer-term context in one
and two directions respectively. It should be noted that while a
relatively simple model, we introduce it here to set the context for
improvements over LSTMs presented below. As proposed in prior
work [11], the architecture of the model is as follows :

BiLSTM Model

(1) Input Sequence
(2) Convolution 1D (filters: 16, kernel size: 4, activation: linear)
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(a) Convolutional Block (b) Identity Block

Figure 1: Two types of residual blocks containing skip con-
nections are used for our ResNet model.

(3) BiLSTM (units: 128, activation: tanh)
(4) BiLSTM (units: 256, activation: tanh)
(5) Dense layer (units: 128, activation: tanh)
(6) Dense layer (units: 1, activation: linear)

2.2 BiLSTM with Attention Mechanism
LSTMs treat different parts of the input sequence “equally”. Re-
search literature has established the benefits of focusing the “atten-
tion” on specific parts of the input [1]. The next implementation
is based on a recent paper [15] applying attention on top of the
LSTMs.

BiLSTM Model with Attention
(1) Input Sequence
(2) Convolution 1D (filters: 16, kernel size: 4, activation: linear)
(3) BiLSTM (units: 128, activation: tanh)
(4) BiLSTM (units: 256, activation: tanh)
(5) Attention (units: 128)
(6) Dense layer (units: 128, activation: tanh)
(7) Dense layer (units: 1, activation: linear)

2.3 Residual Neural Networks (ResNet)
Residual Neural Networks (ResNet) [8, 9] are a combination of
different types of residual blocks. These residual blocks contain skip
connections. The skip connections add the output of the previous
layer in the subsequent layers. Thus, skip connections preserve the
output of the previous layer and solve the problem of vanishing
gradients. Figure 1 shows the residual blocks used in the model.

ResNet model
(1) Input Sequence
(2) ZeroPadding1D (padding:3)
(3) BatchNormalization (axis:2)
(4) Activation (relu)
(5) Convolutional Block (filters: 30, kernel size: 24)
(6) Identity Block (filters: 30, kernel size: 12)
(7) Identity Block (filters: 30, kernel size: 6)
(8) Dense layer (units: 1024, activation: relu)
(9) Dropout (0.2)
(10) Dense layer (units:sequence length, activation:linear)

2.4 Classification Subnetwork
Multi-task learning [6] inspires the architecture of this model. In
this model, there are two subnetworks, classification subnetwork

Figure 2: Basic structure of model with regression subnet-
work and classification subnetwork. The classification sub-
network provides a path for accurately detecting on-off state
of appliance. The final output is a product of regression and
classification subnetwork.

and regression subnetwork. The classification subnetwork deter-
mines the on-off state of an appliance. The regression subnetwork
will generate the value of appliance power consumption. The mul-
tiplication of both outputs is the final output as shown in Figure 2.
As proposed in paper [15], the classification subnetwork will be as
follows:

Classification subnetwork

(1) Input Sequence
(2) Convolution 1D (filters: 30, kernel size: 10, activation: relu)
(3) Convolution 1D (filters: 30, kernel size: 8, activation: relu)
(4) Convolution 1D (filters: 40, kernel size: 6, activation: relu)
(5) Convolution 1D (filters: 50, kernel size: 5, activation: relu)
(6) Convolution 1D (filters: 50, kernel size: 5, activation: relu)
(7) Convolution 1D (filters: 50, kernel size: 5, activation: relu)
(8) Dense layer (units: 1024, activation: relu)
(9) Dense layer (units: sequence length, activation: sigmoid)

We have created two models with the same classification sub-
network as explained above and different regression subnetworks.
In the first model, the regression subnetwork will be the same as
the BiLSTM model with attention mechanism as explained in Sec-
tion 2.2. In the second model, the regression subnetwork is similar
to the ResNet model as explained in Section 2.3.

2.5 Bidirectional Encoder Representation from
Transformers (BERT)

BERT has a local attention mechanism, due to which it considers
part of a sequence for generating weights. Due to its feature of local
attention, it was recently proposed for NILM [17]. As shown in
Figure 3, the BERT model contains two important blocks: tokenizer
and transformer block. The positional embedding in tokenizer adds
the information about the position of the reading in the sequence.
The transformer generates attention heads through the multi-head
attention block. All the attention heads of the multi-attention layer
are concatenated to get the single attention head. The output of
the transformer block is passed through a dense layer to obtain
the final output. In the interest of space, we do not provide the
detailed blocks for BERT in the current paper and refer the reader
to NILMTK-contrib repo.
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Figure 3: BERTmodel containing two important blocks: the
transformer block and tokenizer. The importance of the to-
kenizer is to provide the positional information and trans-
former block contributes in calculating attention head.

3 PARSER FOR IDEAL DATASET
The IDEALHousehold Energy Dataset [16] has appliance andmains
energy data from 39 homes from the UK. One of our important
motivation to create a NILMTK parser for this dataset was that
is now one of the largest (in terms of homes and time) publicly
available dataset1. Here, we introduced the data parser for the
IDEAL dataset according to the NILM metadata [10]. We have
pushed the data converter to the NILMTK repository.

4 EVALUATION
In this section, we describe the dataset, settings, benchmark al-
gorithms, metrics and results. The main aim of the evaluation is
to show the comparison between benchmark algorithms and the
newly implemented algorithms.

4.1 Datasets
We have used the REDD dataset [13] and IDEAL dataset [16]. REDD
has data from 6 homes over several weeks. Themains data is at one
second frequency, and the appliance data is at three seconds fre-
quency. In the IDEAL dataset,mains data is at one second frequency,
and appliance data is at five seconds frequency.

4.2 Baseline Implementations
Weuse three baseline algorithms:Mean [12], Seq2Seq and Seq2point [18].
The Seq2Point algorithm has been verified earlier as the state-of-
the-art algorithm [5].

4.3 Metrics
We have used mean absolute error (MAE)= 1

𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 | as our

metric. Here, n is the number of readings, 𝑦𝑖 is the predicted appli-
ance reading, and 𝑦𝑖 is the ground truth reading of an appliance.

4.4 Experimental Setup
For the REDD dataset and IDEAL dataset, Table 1 provides details
regarding houses selected for training and testing. The selection
of homes for the experiment was based on the availability of ap-
pliances, the contribution of appliance consumption on total con-
sumption and the correlation in consumption between houses used
for a particular appliance. Particularly for the IDEAL dataset, we
have selected the homes with a relatively high amount of appliance
data. We have resampled the mains reading and appliance power

1The Dataport dataset from PecanStreet, which was earlier the largest publicly
available dataset requires a paid license now.

Table 1: Houses used for evaluation.

(a) REDD

Appliance House No
Fridge 1,2,3,4,5
Dishwasher 1,2,3
Microwave 1,2,3
Washer Dryer 1,2

(b) IDEAL

Appliance House No
Fridge 90, 136
Washing Machine 96, 136

consumption for both the dataset at 60 seconds frequency. Our
experiments and choice of appliances are heavily influenced by pre-
vious work [3, 4, 18]. We used leave-one-home-out cross-validation
(where all but the test home are used for training) where the set of
homes is mentioned in Table 1 for both the datasets. We have used
a batch size of 32 and 50 epochs for training all the experiments. We
used fine-tuned hyper-parameters such as input sequence length for
different algorithms as proposed in the paper [5]. We have pushed
all our experiments to NILMTK-contrib repository 2.

4.5 Results and Analysis
The main result for our experiments can be found in Table 2.
The performance for new algorithms is comparable or better than
the Seq2Seq and Seq2point algorithms. For a subset of the appli-
ances, the proposed algorithms are performing better. In the REDD
dataset, the BiLSTM with attention layer and classification net-
work, achieves the best performance for fridge. We believe that
the presence of a classification network helps to detect the duty
cycle accurately. The Seq2Seq and BiLSTM with attention layer
algorithm are comparable for the dishwasher in terms of MAE, but
as seen in Figure 4, Seq2Seq is predicting the appliance to be always
off. In contrast, BiLSTM with attention is accurately generating the
power consumption, though with some false positives. We believe
that the improved performance of BiLSTM with attention weights
is due to the focus on appropriate input corresponding to appliance
usage. For microwave, the Seq2Seq and ResNet are comparable. The
skip connections, as explained in Section 2.3 play a critical role in
ensuring learnability in ‘deeper’ networks.

For the IDEAL dataset, we can see in Table 2, that the proposed
algorithms perform better for both the appliances. For the fridge,
BiLSTM with attention model performs best. For washing machine,
the ResNet model is comparable with Seq2point.

4.6 Limitations and Future Work
The current work empirically compares neural methods on two
datasets. The comparison will be more useful when done on a larger
number of datasets across different countries. More importantly, in
the future, we would like to answer the following two questions:
i) “explaining” the good performance of newer models [14]; ii)
quantifying under which situations a particular model works best.

4.7 Conclusions
In this paper, we have implemented five new neural network based
models for NILM. We have even created a parser for the publicly

2https://github.com/nilmtk/nilmtk-contrib

https://github.com/nilmtk/nilmtk-contrib
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Table 2: MAE (lower is better) on the REDD dataset and IDEAL dataset after cross-validation. The newly implemented algo-
rithms performed better for subset of appliances in comparison to the baseline implementation.

Algorithms REDD IDEAL

Fridge Dishwasher Microwave Washer Dryer Fridge Washing Machine

Seq2Point 33.84 14.43 16.11 38.06 27.02 33.64
Seq2Seq 31.33 13.98 14.05 44.13 23.98 36.25
Mean 75.15 22.11 19.68 124.49 31.71 47.29
BiLSTM 33.69 15.62 19.62 48.01 17.07 41.29
BiLSTM + Attention 36.05 13.84 21.14 63.31 16.96 37.84
BiLSTM + Attention + Classification 26.73 20.08 18.94 59.89 18.95 40.10
BERT 43.12 21.51 20.71 50.46 25.46 57.77
Resnet 33.34 14.29 14.09 55.33 23.99 33.17
Resnet + Classification 27.07 20.24 18.18 48.07 19.80 34.68
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Figure 4: Four algorithms resulted in almost comparable
MAE for dishwasher. (a). ResNet predicts constant off-state.
(b). Seq2point predicts constant off-state. (c). Seq2Seq is able
to detect the on states but cannot estimate the power con-
sumption accurately. (d). BiLSTM with attention generates
values accurately due to attention mechanism.

available dataset. In addition to this, we have provided a compar-
ative study of the benchmark algorithms with five newly imple-
mented ones. The newly proposed algorithms beat the state-of-the-
art NILM methods and pave the way forward for NILM research.
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